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J .  Phys. A: Math. Gen. 21 (1988) 2911-2930. Printed in the U K  

On oblique Alfven waves in a viscous and resistive atmosphere 
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lnstituto Superior Tecnico and Instituto de Fisica-Matematica, C A da Universidade 
Tecnica de Lisboa, 1096 Lisboa Codex, Portugal 
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Abstract. We consider Alfven waves propagating obliquely in an atmosphere, subject to 
a uniform magnetic field of arbitrary direction, in the presence of viscous stresses and 
electrical resistance. This problem is fundamental to theories of atmospheric heating by 
dissipation of Alfvirn waves, on which there is a relatively substantial literature. The Alfven 
wave equation is deduced for an atmosphere with non-uniform diffusivities and propagation 
speed. The wave equation is solved exactly in the case of an isothermal atmosphere, for 
which the Alfvtn speed increases exponentially on twice the scale height and the dynamic 
viscosity increases exponentially on the scale height; the rate of ionisation is assumed 
uniform, leading to a constant electrical diffusivity. The exact solution includes, as par- 
ticular cases, those obtained before for Alfvirn waves in an isothermal atmosphere, in the 
non-dissipative case with vertical (Ferraro and Plumpton) and oblique (Schwartz et a l )  
magnetic field, and in the case of resistive dissipation alone (Campos). The wave fields 
are expressed at all altitudes in terms of hypergeometric functions, which are used to plot 
the amplitudes and phases for several combinations of wave frequency, horizontal 
wavenumber, inclination of the magnetic field to the vertical and viscous and resistive 
diffusivities. It is shown that, for certain ranges of values ofthe parameters, intense localised 
dissipation of waves can occur. This physical mechanism for atmospheric heating is based 
on ( i )  an exact solution of the Alfvirn wave equation, including the effects of ( i i )  viscous 
and resistive dissipation and ( i i i )  the change of propagation speeds and damping rates 
with altitude; the properties of waves are compared with earlier theories, neglecting one 
of the effects mentioned above, viz (i) the phase mixing approximation (Heyvaerts and 
Priest), (ii) the resonance model (Hollweg), ( i i i )  the RLC analogy (Ionson) and (iv) ray 
theory (Osterbrock). 

1. Introduction 

The theoretical prediction of the existence of hydromagnetic waves (Alfvkn 1942) was 
soon followed by applications to solar physics (Alfvin 1943, 1945), including a study 
of atmospheric heating by wave dissipation (Alfvin 1947). The latter points to impor- 
tant extensions of the non-dissipative ‘Alfvkn’ wave in a homogeneous medium: (i)  
the effect of variations of density with height in an atmosphere, in causing a non-uniform 
propagation speed, and thus a deformation of the sinusoidal waveform; (ii) the damping 
by dissipation mechanisms, viz for a transversal incompressible wave, mainly electrical 
resistance and viscous stresses. The purpose of the present introduction is to outline 
the way in which research on Alfvin waves has evolved with regard to issues (i)  and 
(ii) indicated above, to show that in the last 40 years, with a single exception (Campos 
1983a), no exact solutions of the Alfvkn wave equation in a dissipative atmosphere 
have been obtained. The purpose of the present paper is to extend this solution and 
discuss its properties, which may have implications on other topics mentioned in the 
introduction, such as theories of atmospheric heating. 
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The theoretical ‘discovery’ of hydromagnetic waves was substantiated by laboratory 
experiments (Lundquist 1949, Lehnert 1951) before Alfvin waves were observed in 
nature, e.g. in the interplanetary medium (Belcher er a1 1969, Belcher and Davis 1971) 
and in the solar wind (Burlaga and Turner 1976, Denskat and Burlaga 1977) and 
atmosphere (Sawyer 1974, Giovanelli and Beckers 1982). The first important theoretical 
extension of the Alfvbn wave was the study of coupling with compressibility, both 
regarding propagation (Astrom 1950, Herlofson 1950, Banos 1955) and generation 
(Lighthill 1960, Campos 1977, Stein 1981); the subject of magneto-acoustic waves is 
a well established area of magnetohydrodynamics of M H D  (Alfvbn 1948, Cowling 1960, 
Alfvin and Falthammar 1962, Ferraro and Plumpton 1963, Shercliff 1965, Cabannes 
1970). It should be borne in mind that Alfvin waves in atmospheres generally have 
propagation speeds and damping rates varying with altitude; this leads to wave 
equations with variable coefficients, whose properties can be quite different from the 
case of M H D  of homogeneous media, e.g. sinusoidal solutions generally do not exist. 

The study of Alfvbn waves in an inhomogeneous medium started by the consider- 
ation of refraction at interfaces (Ferraro 1954, Stein 1971), and‘proceeded to media 
with continuously varying properties (Hide 1955), e.g. due to the presence of gravity 
(Howe 1969). Although it was predicted fairly early that the decay of mass density 
with altitude would significantly affect the properties of Alfvbn waves (Wallen 1944), 
by making the propagation speed non-uniform, the first exact solution, for an isothermal 
atmosphere, was obtained much later (Ferraro and Plumpton 1958). This solution can 
be arrived at in several different ways (Campos 1983b) and has been used many times, 
e.g. in solar atmospheric models using multiple isothermal layers (Hollweg 1972, 1978, 
1981, 1984a) or an isothermal layer with a homogeneous medium on top (Leroy 1980, 
1981, Schwartz er al 1984). Some of these applications of Alfvin waves in atmospheres 
have tried to address the question of atmospheric heating, although the wave fields 
are calculated neglecting dissipation-an obvious weak point. 

The underlying assumption of atmospheric models using multiple isothermal layers, 
namely that the discontinuities of temperature represent wave reflection and trans- 
mission as well as a continuous temperature profile, is yet to be checked. The approach 
of considering an isothermal atmosphere with a homogeneous medium on top has the 
attraction of allowing the identification of ordinary magneto-acoustic modes in the 
upper layer; it faces the more serious objection that hydrostatic equilibrium is not 
satisfied by an ‘infinite’ homogeneous layer on top of an isothermal atmosphere. The 
case of Alfvbn waves in a polytropic atmosphere, with a linear temperature gradient, 
has also been considered (Zhugzhda 1971, Parker 1984) and applied to the solar 
atmosphere (Thomas 1978, Zhugzhda and ‘Locans 1982); this model avoids discon- 
tinuities of temperature but is restricted to layers of finite thickness, otherwise the 
temperature would diverge. For Alfvin waves in dissipative atmospheres, it may be 
more important (Campos 1983~)  not to neglect damping mechanisms, such as fluid 
viscosity and electrical resistance, than to go into much detail (Campos 1983d) about 
mean-state temperature profiles, which can be modified by wave dissipation. 

The knowledge of Alfvin waves has progressed in several directions, including 
analytical (Barnes and Hollweg 1974, Lacombe and Mangeney 1980) and numerical 
(Hollweg et al 1982, Mariska and Hollweg 1985) studies of non-linear waves, the 
continuous spectrum (Kieras and Tataronis 1982, Connor et a1 1983, Mahajan and 
Ross 1983, Goedbloed 1984) and surface modes (Roberts 1981, Edwin and Roberts 
1982, Narayan and Somasundaram 1985), parametric generation (Petrukhin and Fain- 
shtein 1984) and the effects of displacement currents (Leroy 1983) and resonant modes 
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(Campos 1986a). Some backward steps have also been taken, at least from the point 
of view of analytical modelling, e.g. the replacement of Alfvin waves in an atmosphere 
by an RLC circuit ‘analogy’ (Ionson 1982, 1984) that neglects the variation of Alfvin 
speed with altitude, taken into account by most authors for over a quarter of a century 
(since Ferraro and Plumpton 1958). The claim that the RLC analogy can model the 
heating of coronal loops (Ionson 1985, Kuperus et a1 1981) has been matched by a 
rather different model (Hollweg and Sterling 1984). The reason dissimilar models give 
similar results, in agreement with observation, may have more to do with the assumed 
input energy spectrum at the photosphere than with the properties of the waves. 

Whichever view is taken on the subject of atmospheric heating by waves, e.g. in 
the solar (Osterbrock 1961, Campos 1984, Hollweg 1984c) or stellar (Ulmschneider 
1979) case, it is clear that a fundamental input is the calculation of the wave field, 
taking into account the variation of propagation speed and dissipation rates with 
altitude. The exact solution of the Alfvh wave equation with damping in an atmosphere 
has been obtained (Campos 1983a) in the isothermal case for propagation along a 
vertical magnetic field; in this case the Alfven speed increases exponentially with 
altitude divided by twice the scale height and the magnetic diffusivity was assumed to 
be constant. In the present paper the problem is extended in three ways: (i) the external 
magnetic field may have an arbitrary inclination to the vertical; (ii) the waves may be 
oblique, i.e. have a non-zero horizontal wavenumber, besides a generally non-sinusoidal 
dependence on altitude; (iii) besides electrical resistance, the other form of dissipation 
of linear Al fvh  waves, namely viscosity, is also included, on the assumption of constant 
static viscosity, and hence dynamic viscosity growing exponentially with altitude 
divided by the scale height. The exact solution includes, as particular cases, earlier 
results concerning non-dissipative waves in vertical (Ferraro and Plumpton 1958) and 
oblique (Schwartz et a1 1984) magnetic fields and dissipation by electrical resistance 
alone (Campos 1983a). 

The Alfvh  wave equation in a viscous and resistive atmosphere is valid in non- 
isothermal conditions and for uniform resistive diffusivity and viscosity varying in an 
arbitrary manner with altitude (Campos 1987). The equation has been considered in 
the context of the ‘phase mixing approximation’ (Sakurai and Granik 1984, Steinholfson 
1985), which is based on an assumed form of the solution of the wave equation 
(Heyvaerts and Priest 1983, Nocera et a1 1984). The assumption is that a wavenumber 
exists in the direction of propagation, which is transverse to the direction of non- 
uniformity of the medium, and depends on the latter. The phase mixing theory starts 
from an incorrect form of the dissipative Alfvkn wave equation (see 3 2) and our exact 
solution does not exhibit large space shifts (see § 6 )  as implied by the phase mixing 
approximation. The exact solution has a critical level, of transition layer type (Campos 
1988), and the wave fields are calculated at all altitudes, i.e. below, above and at the 
critical level. Thus we can plot the wave amplitude and phase, as a function of altitude, 
for a range of values of the wave frequency, horizontal wavenumber, inclination of 
the magnetic field to the vertical and viscous and resistive damping rates, showing the 
conditions in which localised intense dissipation can occur. 

2. Wave equations for velocity and magnetic field perturbations 

Dissipative Alfvh  waves are considered in the literature (Cowling 1960, Moffatt 1976, 
Ionson 1982) in the case of uniform wave speed and viscous and resistive diffusivities; 
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the case of non-uniform wave speed has also been discussed (Heyvaerts and Priest 
1983), but the equation derived is in error. Since we need the viscous and resistive 
Alfvkn wave equation, in the case of wave speed and diffusivities varying in one 
dimension, e.g. altitude, we give a short derivation which also indicates the terms 
overlooked in the literature (Heyvaerts and Priest 1983). We consider a mean state of 
magnetohydrostatic equilibrium, with mass density p (  z )  depending only on altitude; 
this is consistent with ( a )  a non-uniform horizontal magnetic field B = B ( z ) e , ,  which 
corresponds to the case of dissipative Alfvkn waves in a magnetic slab, or flux tube, 
and will be discussed in a separate paper; ( b )  an oblique uniform magnetic field 
B = B( ne, + me,), where n = cos 8, m = sin 8 and 8 is the angle of the magnetic field 
to the vertical. Case ( a )  applies to dissipative Alfvkn waves in the low solar atmosphere 
(photosphere and low chromosphere), where the magnetic field is organised into flux 
tubes (Roberts 1981); case ( b )  applies after the flux tubes have merged into a nearly 
uniform magnetic field (Gabriel 1976), in the high chromosphere and corona, and will 
be considered in the following. The velocity U corresponds to a wave perturbation 
over the mean atmospheric state of rest and the total magnetic field H to the superposi- 
tion of a perturbation Bh on the external magnetic field: 

u ( x ,  t )  = u(x, z, t ) ey  
H ( x , t ) = B [ n e , + m e , + h ( x , z ,  t ) e , ] .  

The wave is assumed to be transversal, i.e. the velocity U and magnetic field h 
perturbations are orthogonal to the plane ( x ,  z )  of gravity g (or stratification z )  and 
the exernal magnetic field, and depend only on the variables in that plane (see 
figure 1). 

The equations of induction (2a)  and momentum ( 2 6 )  are 
a h / a t - a v / a l = x V 2 h  -$h'  
a v l a t  - A' ahla l=  7o2v 

where the prime denotes derivative with respect to altitude XI= dx/dz,  V2 is the 
two-dimensional Laplacian (3a)  in the (x, z )  plane and d l 8 1  is the derivative ( 3 b )  
along magnetic field lines: 

(3a)  

(36) a l a 1  = n a / a z  + m alax = cos 8 a /az  + sin 8 alax 

Figure 1. Model geometry. Vertical z direction opposite to gravity g, uniform magnetic 
field B in the XOZ plane making an angle 0 with the vertical, and transverse velocity U and 
magnetic field h perturbations in the y direction. 
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and the resistive ,y and viscous 7 diffusivities may depend on altitude z, as well as the 
Alfvbn speed: 

{A(z)12 = pB2/4.rrp(z) ( 4 a  1 
x(z) = c2/4.rrpCLa(z). ( 4 6 )  

In (4a ,  b )  p denotes the magnetic permeability, c is the speed of light in vucuo and 
a ( z )  is the ohmic electrical conductivity. In the case of uniform electrical diffusivity 
X I  = 0 and variable viscosity 7( z) and Alfven speed A(z), we may eliminate h in (2a ,  b ) ,  
i.e. solve for the velocity perturbation: 

x’=O (alar -XV2)A-2(a/at - 7 7 ~ ’ ) ~  = ( a l a r  -xv2) ahla1 = a2v/al2. ( 5 a )  

In the case of uniform viscous diffusivity v”=O and variable resistive diffusivity x(z)  
and Alfvin speed A(z), we may eliminate v in (2a ,  b ) ,  i.e. solve for the magnetic field 
perturbation: 

, y I = O =  v’ ( 5 b )  

Thus we obtain the A l f v h  wave equations, with viscous and resistive dissipation, for 
the velocity ( 6 a )  and magnetic field ( 6 6 )  perturbations: 

a2v/a t2  - A2 a’v/al = vv2(av /a t )  + A ’ ~ V ~ ( A - ’  a v / a t )  - A ~ ~ v ~ ( A - ~ ~ v ~ ~ )  ( 6 a )  

( 6 b )  

(a /at  - 7V2)(a/af  -XV2)h  = (a /a t  - 7 V 2 )  aula1 =alalA2 dhlal. 

a2h/at2-a/al(A2 ahlal)  = (7 +x)V2(ah/a t )  -XV2(V2h). 

In the case of uniform diffusivities and Alfvin speed, the two wave equations (6a ,  b )  
coincide: 

X I  = 7’ = A’ = 0 [ a 2 / a t 2 - A 2 a 2 / a 1 2 - ( v + X ) V 2 a / a t +  V X V ~ ]  U, h =o. ( 7 )  
The wave equation ( 7 )  is stated (Heyvaerts and Priest 1983) to hold for the velocity 
in the case of uniform diffusivities ,y’= 0 = 7’ and non-uniform Alfvin speed A(z);  
this is erroneous, since A2V2(A-2dv/at) # V 2 ( a v / a t )  and ( 6 a )  does not coincide with 
(7) .  Since Alfvin waves are transversal, i.e. incompressible, they are not affected by 
thermal conduction or radiation, unless they couple non-linearly to compressive modes. 
Thus linear Alfvin waves are damped by viscosity and electrical resistance only and 
(612, b )  are the general forms of the dissipative wave equations. 

Since the atmospheric mean state is steady and horizontally homogeneous, we may 
use a Fourier decomposition in time t and horizontal coordinate x: 

V(z; k, w )  exp[i(kx-ut)] dk  dw (8) H-: v ( x ,  2, t )  = 

where V(z; k, w )  is the velocity perturbation spectrum, for a wave of frequency w and 
horizontal wavenumber k, at altitude z. The dissipative wave equation for the velocity 
( 6 a )  is of fourth order, but in the case of weak damping, the product xv is neglected 
(Heyvaerts and Priest 1983) and, omitting the last term, we obtain a second-order 
equation for the velocity perturbation spectrum: 

[n2A2-iw(x+ 7)]V’+2i(kmnA2+2w,yA’/A)V‘ 

+ [ U ’ -  k2m2A2+iuk2(7 +x)+2 iwx(A”/A-3A”/A2) ]V= 0 ( 9 )  
where the prime denotes, as before ( ( 2 a ) ,  (5a ,  b )  and ( 7 ) )  the derivative with regard 
to altitude V’= d V/dz. The coefficients of ( 9 )  depend on the atmospheric mean state 
and may be specified as follows. 
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(i) We consider an isothermal layer, for which the density p(z)  decays exponentially 
depending on the scale height L (1Oc) and for a uniform magnetic field B, the Alfvin 
speed (4a)  increases at twice that scale ( l o a )  from an initial value ( lob)  at altitude z = 0: 

A( z )  = a exp( z/2L) ( l o a )  

a’= pB2/4np(0) ( l o b )  

L e  RT/g .  (10c) 

(ii) The kinematic viscosity fj depends mainly on temperature and is constant in 
an isothermal layer, so that the dynamic viscosity of viscous diffusivity, ~ ( z )  = fj/po(z), 
varies inversely with density, i.e. grows exponentially (1 l a )  depending on the scale 
height (1Oc): 

77(z) = 770 exp(zlL)  ( 1 l a )  

x ( z )  = xo. (1lb)  

This states that the electrical diffusivity x (  z), which depends mainly on temperature 
and rate of ionisation, is constant (1 16) for an isothermal layer with constant rate of 
ionisation. In this case ( ( l o a )  and ( l la ,  b ) ) ,  the wave equation (9) for the velocity 
perturbation: 

{n’-i[S + E exp( - z /  L)]}L2V+2i[ Kmn + E exp( - z/L)]LV‘ 

+ { K2(iS - m’) + [a’+ i & ( K 2  - I ) ]  exp( - z/ L ) }  v = 0 (120) 

involves four dimensionless parameters, namely the frequency a, horizontal compact- 
ness K and viscous S and resistive E damping: 

R = o L / a  (12b) 

K = kL (12c) 

s = v 0 w / a 2  (12d) 

(12e) 

We perform in (12a) the changes of independent (13a) and dependent (13b) variables: 

2 
E = X o w / a  . 

p =[ i&/(n2- i8) ]  e x p ( - z / ~ )  (130) 

V ( z ;  k, U )  = p ” 4 b )  (13b) 

where v is a constant, which specifies the asymptotic behaviour at high altitude z + m, 
since p + O  and V(z; k, U)-exp(-vz/L)  for $(O) finite. We choose v so that the 
coefficient of 4 does not depend on p, i.e. v is a root of 

(n’-i~)v’-2i~mnv-~’(m~-i~) =o. (14a) 
It follows from (14a) that the differential equation for 4, obtained by substituting 
(13a, b )  into (121, can be divided throughout by p, leading to 

(1 - p ) p ~ “ +  [ I  +2v  - 2 i ~ m n / ( n ’ -  is) - (3 + 2 v ) p l 4 ’  

- ( v 2  + 2v + 1 - K 2  + in2/&)+ = 0 (14b) 

where the prime denotes 4’= d$/dp, the derivative with regard to p. 
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3. Exact general solution and particular cases 

The differential equation (14b) is of the hypergeometric (Kamke 1944) type: 

( 1 - P)P$”  + [ Y - ( a  + P + 1 )PI+‘ - .P$ = 0 

with parameters a, P and y satisfying 

y = 1 $ 2 ~  - 2 i K m n / ( n 2  - is) 
a + p  = 2( 1 + v )  
crP = ( v + 1)’- K 2 +  iR2/E. 

The solution at high altitude, i.e. for large z and small p in (13a), is given (Forsyth 
1929) by 

ccl(p) = C,F(a ,  P ; y ;  P )  + C*P1-yF( 1 + a - Y, 1 + P - 7 ;  2 - Y; P )  (17) 

as a linear combination, with constant coefficients, C,, C 2 ,  of hypergeometric functions 
(Erdelyi 1953) of Gaussian type F = , F , .  Once v is found as a root of (14a),  the 
parameter y is given explicitly by (16a) and a, P by the solution of (16b, c), viz 

a = 1 + v + ( K 2  - 

P = 1 + v-(K2-iR2/E)1’2. 

(18a) 

(18b) 

The wave field (13b) is specified by 

V ( Z ;  k ;  w ) =  C,p”F(a,  P ;  7 ;  p ) +  C 2 p ’ t V - Y F ( 1 + ~  -7 ,  l + p  - y ;  2-7;  p )  (19) 

in terms of Gaussian hypergeometric functions of the first kind, provided that y # 1 
(Poole 1937). 

The two particular integrals in (19) coincide for y = 1, so that the two constants 
of integration would coalesce into one C, + C2 = CO, i.e. (19) is not the general integral 
in the case y = 1 and hypergeometric functions of the second kind G must be introduced 
(Caratheodory 1935). The condition y = 1 in (16a) implies (20a):  

(20a) v = iKmn/( n 2  -is) 

K 2 S ( i + S ) = 0  (20b) 

where the second condition (20b) results from the substitution of (20a) into (14a). 
Thus, we have two cases. (i)  If K = 0, i.e. for vertical waves, with viscous damping S # 0: 

K = O  (21a) 

vo = 0 (21b) 

yo= 1 (21c) 

ao ,  po = 1 * (i  - I ) R / J ~ E .  O l d )  

The wave field is a linear combination of hypergeometric functions of the first (F) 
and second (G) kinds: 

V ( z ; O ; w ) = I l r ( p ) = C , F ( a , , P , ;  l ; p ) + C z G ( a o , P o :  7 0 ; ~ ) .  (22) 
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(ii) If S = 0, i.e. in the absence of viscous dissipation but for oblique waves K f 0, 

6 = 0  ( 2 3 ~ )  

v 1  = i K m / n  (236) 

Y1=1 (23c) 

al, pl  = 1 +iKm/n i ( K 2  - iR2/E)1/2 (23d) 

V(Z; k ;  w ) = p ” [ C i F ( a i , p i ;  1; ~ ) + C z G ( a i , p i ;  1 ; p ) l  

we have the parameters 

which replace (21a-d) in the wave field: 

(24) 

which is of the degenerate type, as (22). 
The Alfvin wave equation in a dissipative atmosphere has been solved exactly 

previously (Campos 1983a) in the case of vertical waves K = 0, no viscous dissipation 
6 = 0 and vertical magnetic field n = 1, m = 0; in this case, electrical resistance remains 
as the sole dissipation mechanism, i.e. the solution is (21c, d )  and (22) with p = 
ie exp( - z / L )  instead of ( 1 3 ~ ) .  A further restriction, i.e. the neglect of dissipation, 
E = 0, leads to the often-quoted solution of the A l f v h  wave equation in an isothermal 
atmosphere (Ferraro and Plumpton 1958). If we take the non-dissipative limit E + 0 
in the particular integrals (22): 

lim F, G [ a (  -i/&)1’2, -a( - i /&)”*;  1; ia exp( - z / L ) ]  
E - 0  

= J ~ ,  Y , ( [ ~ ( - ~ R ’ / E ) ( ~ E  exp( -z /L))]~’*} 

= J o ,  Y0[2a exp( - z/2L)] 

the hypergeometric functions of the first ( F )  and second ( G )  kinds reduce (Watson 
1944), respectively, to Bessel ( J )  and Neumann ( Y )  functions. The original non- 
dissipative solution (Ferraro and Plumpton 1958) assumes a vertical magnetic field 
and has been extended to oblique fields (Schwartz et a1 1984); it is clear from (24) 
that the effect of an oblique magnetic field n # 1, m # 0 in ( l b )  and (3b) is to multiply 
the wave field (25a) by a factor 

p”’-exp( -v , z /L)=exp( - iKmz/nL)=exp( - ikz t an  6 )  (256) 
where 6 is the angle of inclination of the magnetic field to the vertical. Thus the results 
obtained here apply to vertical or oblique waves, in vertical or oblique magnetic fields, 
with viscous and/or resistive dissipation and generalise several previous exact solutions 
(Ferraro and Plumpton 1958, Campos 1983a, Schwartz et a1 1984). 

4. Transition layer between initial and asymptotic wave fields 

We proceed to analyse, in more detail, the general case of oblique waves of arbitrary 
frequency in a viscous and resistive atmosphere with magnetic field at arbitrary 
inclination; the parameter v is a root of (14u), viz 

(n2-iS)(v,  1 +  v - y ) = i K [ m n * ( i 6 + S 2 ) ” * ,  mnT( iS+S2)”2]  (26) 
so that exchanging the sign before the first square root in v (26) involves, by (16a),  
the reverse change of sign in 1 + v - y (the second square root in (26)) i.e. the two 
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particular integrals in (19) are interchanged and the general integral remains the same 
for arbitrary constants of integration C , ,  C,. For definiteness, we pick the lower sign 
in both expressions and find that, for a‘<< 1, 

P V ,  exp( -ikz[mn qs/2)”2]n’/(n4+ a?))  
x exp{kz[mns 7 n ’ ( ~ / 2 ) ’  ’I/( n4+ s’)}  (27) 

and apply the ‘damping condition’ (Campos 1983a) that viscosity should reduce the 
wave amplitude. Two cases arise. 

(i) For a wave propagating in the positive x direction of the horizontal magnetic 
field k > 0, we must pick the - sign, i.e. select the first particular integral in (19), by 
setting C,  = 0 and retaining the first term, with U ,  y given by 

(n* - i s ) (v ,  y )  = iK[mn - ( i 6 +  s 2 ) I J 2 ,  n*-iS -2(i6 + 8* ) ” ’ ]  (28) 

and a,  p by (18a, b). 
(ii) For a wave propagating in the direction opposite to the magnetic field k<0, 

we must pick the + sign in (27), i.e. select the second particular integral in (19), by 
setting C, = 0 and  retaining the second term, which is equivalent to the substitutions: 

(29) 

The solution (19) applies for Ipl < 1 in (13a),  i.e. in the high-altitude range z > z*, 

/p (z*) l=  1 z* = L[log E -: log(n4+ a,)]. (30) 
The critical level is not of type 1, i.e. it is not a singular layer, since the coefficient 
1 - p of the highest-order derivative in (14b) vanishes for p (  5 )  = 1 at the ‘altitude’ 2, 
which is complex: 

p ( 2 )  = 1 5 = L ~og[ i e / (  n’ - i s ) ]  # z* (31) 

p*=p(z , )  = ( n 4 + + 2 ) ” 2 / ( i n 2 - ~ ) ~ e x p ( i 5 )  ( 3 2 ~ )  

6 -  arg(p,) = tan-’(-8/n2) (32b) 
that p* is distinct from unity, i.e. p* lies on the unit circle lp*l= 1 in the p plane, but 
not on the positive real half-axis, i.e. p* # 1 in (32a) or 6 # 0 in (32b). The implication 
of (31) is that 1 - p  is non-zero for all real altitudes O<z<co ,  and  thus the wave 
field,obtained as a solution of (14b), is finite everywhere, including at the critical level 
z = z*. This will be confirmed in the following, viz by calculating analytically the wave 
field at the critical level (see formula (39)) and also by plotting the wave field through 
the critical level (in figures 2-6). This kind of critical level, which is not a singularity 
at real altitude, is sometimes considered as an  ‘artefact’ of the change of variable (13a) 
used to transform the wave equation (12) into a solvable form (14b), viz the hyper- 
geometric type (15) and (16~1, b, c). A closer analysis of the non-singular type of critical 
level shows (Campos 1987b) that it can have a definite physical meaning in the context 
of a classification of critical levels (Campos 1987a), of which the familiar singular 
layer is type I .  In the present case we have a critical level of type 11, i.e. a transition 
layer, since ( i )  in the low-altitude range 0 > z > z*, below the critical level, propagation 
dominates dissipation and  the wave field is specified, for J p ( z ) l >  1, by a hypergeometric 
function of variable l /p ,  such that I l / p l <  1 in formula (33); ( i i )  in the high-altitude 

v, a, p, y-, v +  1 - y, a + 1 - y, p + 1 - y, 2- y 

where a, p are not affected by the sign of k except through v. 

where z* is the altitude of the critical level, specified by (p (z * ) l=  1, viz 

and thus distinct from (30). We can check, substituting (30) into (13a): 
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Figure 2. Ratio of amplitudes (LHS) and phase difference (RHS) betueen altitudes 0 and 
z as a function of altitude made dimensionless by dividing by the scale height L,  Z = z / L .  
Effect of changing dimensionless frequency R = w L / c .  Fixed k = 1, 0 = 45", S = 0.1 = e.  
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Figure 3. As for figure 2. Effect of changing horizontal compactness K = kL. Fixed R = 1, 
8=45" ,  6 = o . l = € .  

range z* < z <CO, above the critical level, dissipation dominates propagation and the 
wave field is specified, for ( P I <  1, by hypergeometric functions of variable p, viz (19); 
( i i i )  at the transition layer z = z* between the low- and high-altitude regions, there is 
a smooth matching of the propagation-dominated regime below to the dissipation- 
dominated regime above, as will be shown by calculating the wave fields in the entire 
altitude range 0 < z < oc. 
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Figure 4. As for figure 2 .  Effect of changing the inclination fJ of the magnetic field to the 
vertical. Fixed R = 1 = k, 6 = 0.1 = E .  
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Figure 5. As for figure 2 .  Effect of changing viscous damping S = v ,w/a’ .  Fixed R = 1 = k ,  
0=45” ,  ~ = 0 . 1 .  

Above the critical level a0 > z > z* the wave field is specified by (19). Below the 
critical level IpI > 1 and thus we should use the solution of the hypergeometric equation 
in terms (Ince 1926) of the variable l /p,  viz 

V ( z ;  k ;  ~ ) = p ” [ C ~ ( - - p ) - ~ F ( a ,  l + a - y ;  l + a - P ;  l /p)+interchange ( a , P ) ]  (33) 
specifies the wave field in the altitude range Os z < z*. The relation (Abramowitz and  
Stegun 1965) between the hypergeometric function of variables p and l / p  allows the 
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Figure 6. As for figure 2. Effect of changing resistive damping E = X o w / a 2 .  Fixed = 1 = k, 
e=450 ,  s=o.i. 

in terms of C , ,  C 2 ,  appearing in the high-altitude solution (19). If we use the transfor- 
mation formula (Morse and Feshbach 1953) between hypergeometric functions of 
variable Y = l / p  and Y/(Y-1)=1/ (1-p) ,v iz  

F ( c Y ,  1 +CY - y ;  1 + -/3; l / p )  = (1 - l /p)-"F(a,  7 - P ;  1 +CY - 

in (33), we obtain an expression for the wave field: 

V ( z ;  k, w )  = p " [  C,(l- p)-"F( CY, y - p ;  1 + a - p ;  1/( 1 - p ) )  + nterchange (a, p ) ]  (36) 

valid at all altitudes 0 < z < 00, because / l / (  1 - p)I  < 1, viz from (13a) it follows that 

1 1  -p12 = [1+ &6(n4+ a')-' exp( - z / L ) ] ~ +  n4.s2(n4+ s ~ ) - ~  exp( - ~ z / L )  > 1. (37) 

Thus the solution (36) coincides with (19) in the high z > z*, and with (33) in the low 
z < z *  altitude ranges, respectively above and below the critical level (30). Both 
solutions (19) and (33) diverge on the circle of convergence lpI = 1, because (Bromwich 
1926) 

Re(y - CY - p )  = -1 -2Kmn6/(n4+ 6')  < - 1 (38) 

by (16a, 6). However, the solution (36) applies at the critical level (30), where the 
variable p (13a) takes the value p* (32a), with 6 # 0 in (326). Thus (36) with (32a) 
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specifies the wave field at the critical level: 

V,(k, U ) =  V(z,; k, w )  

=exp(iv(){Ce[l -exp(i()]-"F(cy, y - p ;  l+cy - p ;  1)/[1 -exp(i()] 

+interchange (cy, p ) }  (39) 

showing that the amplitude I V,/ and phase arg( V,) are finite there. 

5. Effects of frequency, wavenumber, inclination and damping 

For the purposes of computation and  plotting of waveforms, it is most convenient to 
use the solution (36) valid at all altitudes 0 < z < oc in the dimensionless form: 

V(2) = V(z; k, U ) /  V(0; k, w )  ( 4 0 ~ )  

obtained by dividing the velocity perturbation spectrum at altitude z (8) by its initial 
value at altitude z = 0 (40a),  and  measuring (40b) altitude on the scale height L (1Oc). 
We choose for representation the first term of (36), viz 

U(Z) = e x p ( -  v2)[(l-Xo)/(l-X)l"[F(11(1 - X ) ) / F ( l / ( l  -Xo))l (41a) 

F (  Y )  = F (  cy, y - p ;  1 + cy - p ;  Y )  (41 b) 

which involves the (Whittaker and  Watson 1927) hypergeometric function (41 b), with 
parameters determined by (18~1, b) and (28~1, 6)  and  variables 

Xo=iE / (n2 - iS )  (42a) 

X = X o  exp( - Z) (42b) 

corresponding to (13a) at altitude, respectively zero (42a) and z (42b). 
The method of computation is as follows. 
(i) We start with given values of the five dimensionless parameters, namely 

frequency fl (126), horizontal compactness K (12c), inclination 8 of the magnetic 
field to the vertical ( n  =cos  8, m =sin  6 )  and viscous 6 (12d) or  resistive E (12e) 
damping. 

(ii) These values determine the parameter v (28a), which specifies the asymptotic 
wave field, and  cy, p, y ((18a, b) and  (28b) respectively), which determine the 
coefficients of the hypergeometric series (41 b).  

(iii) The latter is summed using an algorithm, described elsewhere (Campos and 
Leitao 1988), which minimises the rounding-off error and truncates the series at a 
given accuracy 

(iv) The altitude range corresponds to ten scale heights O s  Z c 10 and is covered 
with one hundred points in A Z  = 0.1 intervals for the computation of the variables X ,  
(42a) and X (426). 

in the present case). 
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(v) The wave field (41a) is plotted, in figures 2-6, with the modulus lU(Z) l ,  i.e. 
the ratio of amplitude z to initial amplitude, on the LHS and the argument arg{ U ( Z ) } ,  
i.e. the difference between phase at altitude z and  initial phase, on the RHS.  

We takes as the reference, or 'baseline', case: 

R = 2  K = l  (43 0) 

e = 450 (43c) 

& = o . l = S  (43 d,e) 

and vary, in turn, each of the five parameters: 

C? =0.1,0.5, 1.0,2.0, 5.0 (44a 1 

K =0.1, 0.5, 1.0,2.0, 5.0 (44b) 

e = 0 ~ , 1 5 ~ , 3 0 ~ ,  450,600 (44c) 

S = 0.01,0.03,0.10,0.30,0.40 (44d) 

E =0.01,0.03,0.10,0.30, 1.00. (44e) 

(i) The frequency R = wL/a = 27rL/A takes values ranging from a small to a large 
variation of mass density p ( O ) / p ( A )  = exp(A/L) = e x p ( 2 r / R )  over one reference 
wavelength A = 27ra/w. 

(ii) The horizontal compactness K = kL takes values ranging from the long wave 
limit kL<< 1 to the ray or JWKB approximation k2L2 >> 1 ,  including values about unity. 

(iii) The inclination of the uniform magnetic field 6 takes values on either side of 
(43c) equal horizontal and  vertical components, up  to purely vertical 0 = 0". 

(iv) The viscous damping 6 = v o w / a 2  takes values from the very small S << 1 to the 
small but non-negligible S2<< 1 ,  so that dissipation can become dominant over moderate 
distances. 

(v) The resistive damping E = x o w / a 2  takes values from as small as E << 1 to a little 
larger, E = 1 ,  but in all cases ES S O . 1  so that the neglect of products of diffusivities is 
justified. 

6. Discussion 

For each of five possible combinations, leaving four parameters in (43a-e) fixed and 
allowing the remaining parameter to take five values (44a-e), we have a plot (shown 
in figures 2-6) with amplitude on the LHS and phase on the R H S  as a function of 
altitude 2. The plots show that (i) (figure 2) as the wave frequency increases, the 
phase becomes larger ( R H S )  and the amplitude ( L H S )  starts to decay monotonically at 
higher altitude; (ii) (figure 3)  as the horizontal wavenumber increases, the phase 
becomes larger ( R H S )  and the amplitude decays faster ( L H S )  at the higher altitude 
2 2 2 ;  (iii) (figure 4) as the magnetic field inclination to the vertical increases, the 
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phase also varies more rapidly ( R H S )  and the amplitude decays faster (LHS), though 
only at higher altitudes; (iv) (figures 5 and 6)  increasing the viscous 6 or  resistive E 

damping does not have much effect on phase ( R H S ) ,  but causes a more pronounced 
'bulge' of the amplitude at low altitude ( L H S )  before dissipation imposes a monotonic 
decay for Z b 3. The most interesting feature of the preceding plots is that, although 
viscous and  resistive dissipation cause the wave amplitude to decay at high altitude 
in all cases, at lower altitudes there may be a maximum, more pronounced for larger 
frequency R b 2 (figure 2 ) ,  horizontal compactness K b 2 (figure 3), magnetic field 
inclination B 3 50" (figure 4)  and viscous S b 0.3 (figure 5)  and resistive F b 0.3 (figure 
6) diffusivities. 

In order to explain this, note that the wave field (41a) is essentially a power series 
(41b) with negative exponential variable (42b); the simple example of a function 
involving the difference of two exponentials, one decaying at double the rate of the 
other: 

shows that it can have a maximum, while it starts at f(0) = 0 and decays ultimately to 
zero,f(co) = 0. The reason is that, since exp( - 2 2 )  decays much faster than exp( - Z) ,  
the difference between them initially increases, and since they both decay to zero for 
large Z, a maximum must exist for some intermediate moderate value of Z. A similar 
phenomenon, whereby the addition of electric resistance temporarily increases the 
magnetic field strength, is known (Moffatt 1976) in the temporal instead of spatial 
domain; an  example is (Moffatt 1976) a magnetic field initially confined to a sphere, 
whose diffusion outwards is more effective for larger diffusivity, for a short time period, 
before dissipation causes the ultimate decay of the field. In the present problem, of 
dissipative magneto-atmospheric waves, the Alfvin speed is small at low altitudes 
(because the mass density is relatively high) and  the viscous and resistive diffusivities 
help the wave field to travel upward into the atmosphere, more so if it is very unsteady, 
i.e. for high frequency or  large wavenumber. As distance increases, the Alfven speed 
( loa)  becomes larger and  the diffusivities dissipate more of the wave energy, so that 
the usual picture of the monotonically decaying damped wave applies. In the intermedi- 
ate range, the wave amplitude may go through a maximum, as illustrated in figures 2-6. 

At the maximum of the amplitude of the wave form, the gradients aula.7, ah/az 
are determined by the phase changes and are moderate ( R H S  of figures 2-6); the change 
in amplitude near the maximum enhances the modulus of the gradients and leads to 
intense viscous & and resistive Em dissipation: 

Thus we conclude that Alfven waves in a viscous and  resistive atmosphere may be 
subject to intense localised dissipation by the physical process described above, which 
we may designate propagation-diffusive coupling; this refers to the fact that the 
mechanism is based on (i) the exact solution of equations describing the interaction 
of magnetic fields with ( i i )  atmospheric stratification and ( i i i )  viscous and resistive 
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dissipation. Other atmospheric heating mechanisms, involving hydromagnetic waves, 
have been proposed before, but they lack one of the essential features (i)-(iii) listed 
above, e.g. ( a )  the phase mixing approximation (Heyvaerts and Priest 1983) is not 
exact (i), i.e. is based on assumptions as to the form of the solution of the wave 
equation and other simplifications; ( b )  the resonance model (Hollweg 1984a, b) does 
not include the effects (iii) of dissipation in the calculation of the wave fields, although 
dissipation is necessary to heat the atmosphere; (c) the RLC analogy (Ionson 1982) 
does not include the effects (ii) of atmospheric stratification, since the wave speeds 
and damping rates are treated as effectively constant; ( d )  the variation of mean-state 
parameters with altitude has been considered in the ray approximation (Osterbrock 
1961) but the latter does not apply to long waves. Since it is of some importance to 
realise the extent to which these assumptions can restrict the properties of the waves 
and affect the atmospheric heating mechanism, we proceed to discuss in turn the 
implications of the ray ( d ) ,  RLC (c),  resonance ( b )  and phase mixing ( a )  approaches. 

The ray approximation requires the compactness to be large, i.e. w2L2/a2 >> 1, which 
is equivalent to wavelength A short compared to the scale height L, viz A’<< 4.rr2L2. 
In an atmosphere, the Alfvkn speed a ( z )  + CO diverges with altitude, and since the 
wavelength A = 2 m / w  for a fixed frequency w also diverges as A -+ CO, the ray approxi- 
mation breaks down. In the case ( l o a )  of an isothermal atmosphere under an uniform 
magnetic field, the J W K B  approximation ( w 2 L 2 / a ~ )  exp( -z /L)  >> 1 applies to high- 
frequency waves w > u,/L at low altitude z<< 2L log(wL/a,) and fails to apply to 
low-frequency waves w < a,/ L at any altitude. As an example of the risks of applying 
the ray approximation to magneto-atmospheric waves, we give the following (others 
are discussed by Thomas (1982) and Campos (1983e, 1985, 1987a)): the dispersion 
relation k,n = w /  a - mk implies that an Alfvkn wave would be propagating upward at 
low altitude, and in the case of a strictly oblique magnetic field, m # 0 # n, at high 
altitude a + a3 the wave propagates upward for k < 0 and downward for k > 0. Ray 
theory would suggest that the ‘rays’ would turnover, k, = 0, at some intermediate 
altitude for k > 0, i.e. the case k > 0 would be singular but not the case k < 0. However, 
the ray approximation does not hold at intermediate altitudes and the exact wave 
equation (12a) has a singularity at Ip l=  1 in (13a), i.e. at altitude z* given by (30), 
which is independent of k ;  the singularity p = 1 occurs for non-real I (31), implying 
that the wave field (39), calculated for (32a), has finite amplitude and phase. The 
waves exhibit finite asymptotic phase in figures 2-6 because the Alfvkn speed diverges 
sufficiently fast with altitude, e.g. for the case ( l o a )  the asymptotic phase for propaga- 
tion from altitude z = 0 to z = CO would be given, in the ray approximation, by 

A 4  = Jox [w/A(z)] dz = ( w / a o )  exp( - z/2L.) dz =2wL/uo= 2 a .  (47) 

Thus the ray approximation is qualitatively correct in predicting a bounded phase, but 
the actual value is different from (47), because ( i )  for non-dissipative propagating 
waves, the exact solution is a Hankel function of the variable in ( 2 5 ~ ) ;  (ii) viscous 
and resistive dissipation introduces additional phase effects into the more general 
solution ( 3 6 ) .  

The ray approximation is implicitly used in the RLC analogy (Ionson 1982, 1984), 
because the coefficients of the dissipative Alfvkn wave equation are taken as ‘lumped’ 
constants. In  this case, of constant wave speeds and damping rates, the solutions of 
the wave equations are complex exponentials, leading to (i) exponentially decaying 
amplitudes and (ii)  phases which are linear functions of distance. The analytical form 
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of the exact solution ((19), (33) or (36)), or the plots in figures 2-6, show that (i)  and 
(ii)  are not met even approximately by Alfvin waves in a dissipative atmosphere. The 
problem lies not so much with the RLC analogy, but rather with the choice of constant 
parameters. A RLC circuit with constant coefficients represents a wave in a 
homogeneous medium, e.g. sound in an uniform tube or the vibrations of a string of 
uniform thickness. Waves in an atmosphere are similar (Campos 1986b) to the vibra- 
tions along a string of decreasing thickness, or sound in a horn of converging shape, 
since the mass per unit length reduces with altitude: this would lead to a RLC circuit 
with variable parameters to account for the fact that the wave experiences a varying 
resistance and inductance as it travels through the atmosphere. A RLC circuit with 
variable parameters no longer has the sinusoidal solutions assumed by Ionson (1982, 
1984). The process of replacing the Alfvkn speed and damping rates, which vary by 
several orders of magnitude, e.g. over the height of the solar chromosphere, by a 
constant ‘lumped’ coefficient, eliminates some of the physics of the problem; the RLC 
circuit with constant parameters corresponds, in the present theory, to the lowest-order 
term p ”  in the wave field at high altitude (19), i.e. a single exponential -exp( vz/ L) 
with monotonic decay Re( v) < 0, which cannot feature the maxima at intermediate 
altitude shown in figures 2-6. Moreover, any wave equation of second order, e.g. for 
Alfvin or magnetosonic gravity waves, leads to the same RLC circuit, the only possible 
distinction being the assumed constant values of the ‘lumped’ coefficients. The claim 
(Kuperus et a1 1981, Ionson 1985) that the RLC circuit analogy is independent of the 
particular heating mechanism is an admission that it cannot distinguish between 
different wave modes. The mechanism of resonant wave absorption of magneto- 
atmospheric waves may apply best, not to Alfvtn, but rather to magnetosonic modes 
(Campos and Leitlo 1986, Campos 1987b) which have a critical level (Nye and Thomas 
1976, Adam 1977). 

The fact that the properties of Alfven waves are significantly affected by atmospheric 
stratification has been recognised for some time (Ferraro and Plumpton 1958) and has 
been used in theories of atmospheric heating, such as the resonance model (Hollweg 
1984a, b), using three isothermal layers. The heating of an atmosphere by waves 
depends on the presence of dissipation processes to extract energy from the waves 
and deposit it on the mean state. These dissipation mechanisms, e.g. viscosity or 
electrical resistance, also affect the waveforms, viz amplitudes and phases. Thus it is 
somewhat contradictory to neglect dissipation in the calculation of the wave fields, 
and then to consider it in order to estimate the energy input to the atmosphere. The 
implication is that theories of atmospheric heating, based on non-dissipative solutions 
of the Alfvin wave equations should be compared against dissipative solutions, to 
check whether: (i) the same physical effects occur, e.g. are the resonance or damping 
conditions qualitatively similar with and without dissipation? (ii) even if they are, 
there must be quantitative differences, e.g. the amplitude in a resonance condition is 
limited by damping. Both of the issues ( i )  and (ii) could lead to changes in the estimates 
of the energy deposited by the waves in the atmosphere and thus the effects of dissipation 
on the waveforms cannot be safely ignored. 

A common claim to atmospheric wave heating mechanisms, e.g. the RLC analogy 
(Ionson 1982), the resonance model (Hollweg 1984a) and the phase mixing approxima- 
tion (Heyvaerts and Priest 1983), is that the rate of heating is independent of the value 
of the diffusivities and is determined only by wave properties. This is the case for the 
absorption of a magnetosonic gravity wave at a critical level (McKenzie 1973, Campos 
and Leitlo 1986), since the reduction of wave amplitude, and the phase change across 
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it, determine the energy loss. These results emphasise the importance of accurate 
calculation of the wave fields, implying a careful consideration of all approximations 
made. One of the most ingenious and intriguing approaches to the study of magneto- 
atmospheric waves is the phase mixing approximation (Heyvaerts and Priest 1983, 
Nocera er a1 1984), because it includes all essential effects, but it is debatable on at 
least three points: (i) it starts with the dissipative Alfvkn wave equation in the form 
(7), which does not apply in the case (6a) of non-uniform Alfvkn speed; ( i i )  it assumes 
that a solution exists in the form 

u ( x ,  2. t )  = W ( x ,  z )  exp[i(k(z)x-wt)] dk dw (48) 

with the main z dependence in the wavenumber (k(z)  in the x direction, instead of 
taking the Fourier decomposition (8), which is formally justified; (iii) it assumes a 
constant dynamic diffusivity 77 = f j / p  - constant, and since the kinematic viscosity 
varies like the inverse square root temperature fj - T-”* this implies that mass density 
p and temperature T are related by p - T-”2,  which is a poor fit to most atmospheres, 
e.g. solar. We will defer a detailed examination of the phase mixing approximation 
(48) to another paper and address here only the crucial question for the feasibility of 
the heating mechanism, which relies on the phase differences between adjoining wave 
components of the wave, to develop into large waveform gradients, leading to intense 
dissipation, even by small diff usivities. Without the phase mixing ‘assumption’ implied 
in (48), it is not clear whether ( a )  the phase differences would build up until diffusion 
becomes effective at damping them or (6)  the dissipation could cause wave decay 
before waveform shearing would become significant. The plots on the RHS of figures 
2-6 support hypothesis ( b ) ,  because there is no evidence of large phase changes for 
a wide range of values of wave and atmospheric parameters. The build-up of large 
phase differences may be the heating mechanism more suited to magnetosonic gravity 
waves near a critical level (Campos 1985, 1987b). 

In the present work we also reach the conclusion that Alfvkn waves in a viscous 
and resistive atmosphere can be subject to localised dissipation and thus cause intense 
heating. This supports the idea that heating of atmospheres by hydromagnetic waves 
is physically possible; whether it does occur in specific cases, e.g. for the heating of 
the solar chromosphere or corona, depends on detailed modelling which is beyond 
the scope of the present work. One of the reasons that theories of atmospheric heating 
by waves are controversial may be that they involve assumptions, such as the RLC 
analogy with constant coefficients, the neglect of dissipation in the calculation of 
waveforms or the phase mixing or ray approximations, which are open to debate. The 
availability of exact solutions involving the three essential ingredients (propagation 
along the magnetic field, atmospheric stratification and viscous and resistive dissipa- 
tion) should give more credibility to the feasibility of heating atmospheres by hydromag- 
netic waves. The main features of the present model are: (i)  the physical mechanism 
for localised Alfvkn wave dissipation is an interaction of propagation and diffusion 
effects in space, somewhat analogous to properties of unsteady magnetic fields in time 
(Moffatt 1976); (ii) wave amplitude and phase can be plotted at all altitudes for a 
variety of combinations of frequency, wavenumber, magnetic field inclination and 
viscous and resistive diffusivities; (iii) the ranges of these parameters for which intense 
dissipation can occur can be determined, together with an indication of the relevant 
altitude range and maximum amplitude. 
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